tg-me.com/ds_interview_lib/203
Last Update:
Почему может быть предпочтительнее использовать меньшее количество предикторов?
▫️Использование нерелевантных признаков увеличивает тенденцию модели к переобучению, потому что эти признаки вносят больше шума.
▫️Когда две переменные скоррелированы, модель может быть сложнее интерпретировать.
▫️Может возникнуть проклятие размерности.
▫️Вырастают вычислительные затраты.
В целом, использование меньшего числа предикторов часто улучшает обобщающую способность модели. Это означает, что модель лучше работает с новыми данными, не участвовавшими в обучении.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/203